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Abstract

Numerical methods are developed for solving the elastica and the buckling load of simply supported tapered

columns subjected to compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon

cross-sectional shapes are considered, whose material volumes are always held constant. The column model is based

on Bernoulli±Euler beam theory. The Runge±Kutta and Regula±Falsi methods are used to solve the buckling load

and the postbuckling de¯ected shape vs load. Extensive numerical results, including the equilibrium paths, the

shapes of elastica and the buckling loads are presented in non-dimensional forms. By varying the section ratio, the

strongest columns are identi®ed for each taper and cross-sectional shape. # 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The ®rst studies of the elastica were published by Euler (1774). A survey of the classical literature on

this subject was published by Schmidt and Da Deppo (1971). Present-day applications of elastica

including statics and dynamics problems were discussed by Wilson and Mahajan (1989) and Lee et al.

(1993), respectively. Other works related to the present studies, especially those involving uniform

beams, were studied by Love (1927), Timoshenko and Gere (1961), Rojahn (1968), Wang (1981), Wilson

and Snyder (1988), Lee (1990), Chucheepsakul et al. (1995), and Chucheepsakul et al. (1996).
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Since columns are basic structural forms, these units have been widely used in various engineering

®elds. In column problems, both the buckling loads and postbuckling behavior are very important to

structural design. The column behavior under loads depends on the cross-sectional shape, taper type and

volume of the column (Gere and Timoshenko, 1984; Haftka et al., 1990). Especially estimating the

buckling loads of nonprismatic columns, which have the same volume with speci®c length, are attractive

in the viewpoint of optimal design. Since Lagrange (1773) attempted to determine the optimum shape

for a column, many investigators including Clausen (1849), Keller (1960), Tadjbakhsh and Keller (1962),

Barnes (1988), and Cox and Overton (1992) determined the shape of the strongest column which is

de®ned as the elastic column of a given length and volume which can carry the highest axial load

without buckling. In the most previous works related on the strongest column, only the equilateral

triangular, square and circular were considered as the cross-section. Considering the erecting condition

and the aesthetic viewpoint, the cross-sections of regular polygon are sometimes needed in the practical

engineering ®elds. Nowhere in the open literature gave the solutions for the class of elastica problems

considered herein; the elastica and buckling load of nonuniform or tapered columns of regular polygon

cross-section with constant volume, whose cross-sectional depths are varied by functional fashions. The

main purpose of this paper is to investigate both the buckling loads and elastica of such columns.

In the analysis of elastica, one usually begins with the classical Bernoulli±Euler beam theory, the

nonlinear di�erential equation that relates de¯ection to load. This beam theory is also used in the

present analytical studies. The following assumptions are inherent in this theory; the column is linearly

elastic, the neutral axis for bending is incompressible, and transverse shear deformations are negligible.

Historically, solutions of elastica have four forms: (1) closed-form solutions in terms of elliptic

integrals; (2) power series solutions; (3) numerical solutions; and (4) experimental solutions. The present

study should be classi®ed into the numerical solutions.

2. Object column

Shown in Fig. 1(a) is the object column of speci®c length l and of constant volume V. All the columns

analyzed in this study have the same length and the same volume. Its cross-sectional shape is the regular

polygon, whose cross-sectional depth depicted as h varies with the axial length s. The area and second

moment of area of cross-section depicted as A and I, respectively, vary with s. Figure 1(b) shows the

Fig. 1. Column with constant volume and its variation of cross-sectional depth.
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variation of depth h with s. As shown in this ®gure, the depth h is varied by functional fashion, and

depths h at s = 0 and l, and at s = l/2 are h0 and hm, respectively. For de®ning geometry of column, a

non-dimensional system parameter or section ratio n is introduced as follows.

n � hm=h0 �1�

The area A and second moment of area I of the regular polygon cross-section with integer m of side

number and cross-sectional depth h are given by, respectively,

A � c1h
2 �2�

I � c2h
4 �3�

where

c1 � m sin�p=m� cos�p=m� �4:1�

c2 � m sin�p=m� cos3�p=m�
�
1� tan

2�p=m�=3
�
=4 �4:2�

in which the values of c1 and c2 with in®nite number m�1�, namely circular cross-section, are converged

to p and p=4, respectively. Also, it is noted that every axis across the centroid of a regular polygon

cross-section is a principal axis and has the same second moment of area given in eqn (3).

Now, consider the functional equations of variable depth h. It is natural that all columns whose

variable depth are prescribed should be the object ones. In this study, the linear, parabolic and

sinusoidal tapers are chosen as the variable depth h of tapered columns. First, the equation h of linear

taper through three points of �0, h0�, �l=2, nh0� and �l, h0� in rectangular co-ordinates �s, h� are obtained

as follows.

h � h0
�
2c3�s=l� � 1

�
, 0E sE l=2

h � h0
�
ÿ 2c3�s=l� � 2c3 � 1

�
, l=2E sE l �5�

where

c3 � nÿ 1 �6�

The column's volume V can now be calculated by using eqns (2) and (5):

V �

�l
0

A ds

� c4
ÿ
c1h

2
0l
�

�7�

where

c4 � V=
ÿ
c1h

2
0l
�

�
ÿ
n2 � n� 1

�
=3 �8�
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In the above equation, c4 is de®ned as a ratio of constant volume V to volume of uniform column of

regular polygon cross-section with depth h0, c1h
2
0l.

Second, the equation h and c4 value of parabolic taper are given by

h � h0
�
ÿ 4c3�s=l�

2 � 4c3�s=l� � 1
�
, 0E sE l �9�

c4 �
ÿ
8n2 � 4n� 3

�
=15 �10�

Finally, the equation h and c4 value of sinusoidal taper are, respectively,

h � h0
�
c3 sin�ps=l� � 1

�
, 0E sE l �11�

c4 � �nÿ 1�
2
=2� 4�nÿ 1�=p� 1 �12�

In eqns (9) and (11), c3 is de®ned in eqn (6).

3. Mathematical model

The symbols and loading for the column de®ned in above section are depicted in Fig. 2. The column

is supported by the hinged and movable ends. The column subjected to a compressive end load P less

than the buckling load B is perfectly straight. But when the P exceeds the B, the column is buckled. The

dashed line and the solid curve are the neutral axes of the unbuckled and buckled column, respectively.

Thus the shape of elastica is the solid curve de®ned by the (x, y ) co-ordinate system whose origin is at

hinged end. At material point (x, y ), the column's arc length is s, and the variable area and second

moment of area of cross-section taken with respect to s are A and I, respectively. The rotation of cross-

section and bending moment are depicted as y and M, respectively, in this ®gure. The axis length of

buckled column maintains its length l due to incompressibility of column, and therefore the s value at

movable end is l. The rotation at hinged end (s=0) and the horizontal displacement at movable end

(s= l ) are a and D, respectively. It is assumed that the Bernoulli±Euler theory governs the buckled

column behavior under load, for which the di�erential equations of the elastica (Timoshenko and Gere,

1961) are

dy=ds � ÿPy=EI, 0E sE l �13�

dx=ds � cosy, 0E sE l �14�

Fig. 2. Variables of elastica of buckled column.

B.K. Lee, S.J. Oh / International Journal of Solids and Structures 37 (2000) 2507±25182510



dy=ds � siny, 0E sE l �15�

where E is Young's modulus and the term of Py in eqn (13) is the bending moment M at the material

point (x, y ).

Since the horizontal and vertical displacements at hinged ends (s=0) are not allowed, the following

boundary conditions are obtained:

x � 0 at s � 0 �16�

y � 0 at s � 0 �17�

Since the vertical displacement at movable end (s = l ) is not allowed, the boundary condition is

y � 0 at s � l �18�

To facilitate the numerical studies and to obtain the most general results for this class of problem, the

axial load, the geometric parameters, and the governing di�erential equations with their boundary

conditions are cast in the following non-dimensional forms. The ®rst is the load parameter,

p � Pl2=
ÿ
p2EIe

�
�19�

where Ie is the second moment of area of circular cross-section of uniform column whose volume is V,

de®ned as

Ie � V 2=�4pl2� �20�

In the above two equations, the load parameter p is de®ned by using the constant volume V and the

speci®c length l in order to compare all the responses of columns regardless of taper type, side number

m and section ratio n.

The arc length s and coordinates (x, y ) are normalized by the column length l, or

l � s=l �21�

x � x=l �22�

Z � y=l �23�

The displacement D of movable end (s = l ) is also normalized by l, or

d � D=l �24�

When eqn (3) is combined with either eqn (5) or eqn (9) or eqn (11), and eqns (19)±(23) are used, the

non-dimensional form of eqn (13) becomes

dy=dl � ÿpc21c
2
4pZ=�4c2i�, 0E lE 1 �25:1�

where for linear taper:

i � �2c3l� 1�4, 0E lE 0:5

i � � ÿ 2c3l� 2c3 � 1�4, 0:5E lE 1 �25:2�
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for parabolic taper:

i �
ÿ
ÿ 4c3l

2 � 4c3l� 1
�4
, 0E lE 1 �25:3�

for sinusoidal taper:

i �
�
c3 sin�pl� � 1

�4
, 0E lE 1 �25:4�

It is recalled that the coe�cients c1±c4 of di�erential eqn (25.1) with eqns (25.2)±(25.4) contain the side

number m and section ratio n, respectively, as shown in the previous section.

Further, with eqns (21)±(23), eqns (14) and (15) become

dx=dl � cosy, 0E lE 1 �26�

dZ=dl � siny, 0E lE 1 �27�

The non-dimensional forms for boundary conditions of eqns (16)±(18) are obtained by eqns (21)±(23):

x � 0 at l � 0 �28�

Z � 0 at l � 0 �29�

Z � 0 at l � 1 �30�

For other end constraints e.g. clamped±clamped, clamped±movable, and clamped±free ends, the

corresponding boundary conditions can be easily obtained by the similar process mentioned above.

4. Numerical methods

Based on the above analysis, the algorithm was developed to solve di�erential eqns (25.1), (26) and

(27). The Runge±Kutta and Regula±Falsi methods (Carnahan et al., 1969) were used to integrate

di�erential equations and to determine the rotation of the cross-section at l � 0, a, for a given geometry

of column. This algorithm is summarized as follows:

(1) specify taper type (linear/parabolic/sinusoidal), geometry (m and n ), and load p. Calculate c1-c4. It is

recalled that m is the integer number of sides of regular polygon cross-section;

(2) assume a trial value at in which ®rst trial value is zero;

(3) integrate eqns (25.1), (26) and (27) with the boundary conditions of eqns (28) and (29) in the range

from l � 0 to 1 using the Runge±Kutta method. The results give trial solutions for y � y�l�,

x � x�l� and Z � Z�l�.

(4) set D � Z�1�. If the value of at assumed in step 2 is the characteristic value of the elastica, then D

must be zero due to eqn (30). The ®rst criterion for convergence of the solutions is jDjE1� 10ÿ10;

(5) if the value of D does not satisfy the ®rst convergence criterion, then increment the previous value of

at;

(6) repeat steps (3)±(5) and note the sign of D in each iteration. If D changes sign between two

consecutive values a1 and a2 of at, then the characteristic value a lies between a1 and a2;

(7) compute an improved value of at based on its two previous values using the Regula±Falsi method.

The second criterion for convergence of solutions is j�a2ÿa1�=a2jE1� 10ÿ5;
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(8) terminate the calculations when two convergence criteria are met. Print the ®nal solutions to the

elastica, y � y�l�, x � x�l� and Z � Z�l�, and then compute the displacement d � 1ÿ x�1�. If there is

no solution, which means that D does not change sign until the trial value of at reaches p, the

speci®ed p is less than b and the column is still straight. Here, b is the buckling load parameter

de®ned as

b � Bl2=
ÿ
p2EIe

�
�31�

Also, the buckling load parameters b were calculated in a straightforward way using the di�erential

equations. Just after the column is buckled, all values of column behavior including a are close to zero.

In this study, the buckling load parameter b is approximately equivalent to the load parameter p whose

rotation of cross section at l � 0, a, is 1� 10ÿ10, i.e. nearly zero but not zero. Specify column taper, m,

n, of course not p and set y � 1� 10ÿ10 at l � 0 in eqns (26) and (27). And assume the trial value p

instead of at in step 2. Remaining numerical procedures are the same as the above procedure, and of

course the characteristic value of eqn (25.1) is p which is now an approximate buckling load parameter

b.

Based on these algorithms, two FORTRAN computer programs were written to solve the elastica and

buckling loads, respectively. All computations were carried on a notebook computer with graphics

support. For all of the numerical results presented herein, a step size of Dl � 1=50 in the Runge±Kutta

method was found to give convergence for a and b to within three signi®cant ®gures. The numerical

results are now discussed in the next section.

5. Numerical results and discussion

Firstly, we consider the elastica problem. Shown in Fig. 3 are the equilibrium paths of linear taper

with m=3, 4 and c (circular cross-section) for n=1.5, which represents the de¯ections (a=p, d and Zm)

vs p curves after buckling. Here, Zm is de®ned as value of Z at column's mid-point (l � 0:5). The

nonlinear responses of a=p and d increase as p increases; those of Zm reach peaks as p is increased. The

increasing rates of all responses are higher in lower p. Especially the rates are very high just after the

Fig. 3. Equilibrium path of linear taper with n= 1.5 by side number m.
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columns are buckled. Just after buckling of the column, as the integer number m increases from m=3

to m=4 to m � c�1�, all de¯ections increase, other parameters remaining constant. But it is true that

in the case of response Zm, the fact is reversed when p exceeds some characteristic value. It is seen that

the p values marked by q are the buckling load parameters b of corresponding columns. For example,

the b of m=3 is 1.484.

Shown in Fig. 4 are the equilibrium paths of parabolic, sinusoidal and linear tapers for m=3 and

n=2.5. Just after buckling, as the taper type is changed from parabolic to sinusoidal to linear taper, the

response of a=p increases corresponding to this change, other parameters remaining constant. Also, the

buckling load parameters are marked by q on the p axis.

Figure 5 shows the elastica of linear taper with m=3, 4, 5 and c for n=1.5 and p=1.8. From this

Figure, as the m value increases from 3 to c, the horizontal and vertical de¯ections increase.

Secondly, we consider the buckling load problem. For the purpose of validation of this study, the

buckling load parameters b and one buckling load B predicted by the present theory, respectively, are

compared to those available in references in Table 1 which shows the results of this study quite agree

with the reference values.

Shown in Figs. 6, 7, 8 are the b vs n curves of columns with m=3, 4, 5 and c for linear, parabolic

and sinusoidal taper, respectively. Each curve reaches a peak which is marked q. At these peak points,

the columns corresponding to the given taper types show the largest b values which are the buckling

load parameters of the strongest columns. Here the word `strongest' used to mean `most' resistant to

Fig. 4. Equilibrium path of columns with m= 3 and n= 2.5 by taper type.

Fig. 5. Elastica of linear taper with n= 1.5 and p= 1.8 by side number m.
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buckle. It is found that all the strongest columns occur at the same value n regardless of side number m

if the taper type is same. And all b values of strongest columns decrease, as the m value is increased

from 3 to c. The values of b and n of all strongest columns are summarized in Table 2. All b values of

strongest columns are largest at m=3 (triangular cross-section) and smallest at m= c (circular cross-

section), and the ratios of m=3, 4 and 5, respectively, to m= c are the same regardless of taper types.

For example, the ratios of m=3 to m= c are 1.210 for all taper types.

Shown in Fig. 9 are the b vs n curves of parabolic, sinusoidal and linear tapers, respectively, for

m=3, in which the strongest columns are marked by q. The strongest of all columns by taper type is

the parabolic tapered column as shown in this Figure and Table 2. The e�ect of taper type on b is

negligible when n is less than about 1.3.

Table 1

Comparisons of b and B between this study and references

b or B

Geometry This study Reference

n = 1a, m = c b = 1.0 1.0 of ref. [A]c

n = 2.32b, m = c B = 553 lbs 550 lbs of ref. [B]c

Sinusoidal (2460 N) (2447 N)

n = 1.98, m = 3 b = 1.574 1.573 of ref. [C]c

n = 1.98, m = 4 b = 1.362 1.363 of ref. [C]c

n = 1.98, m = 5 b = 1.323 1.323 of ref. [C]c

n = 1.98, m = c b = 1.301 1.301 of ref. [C]c

Parabolic

a If n=1, the columns are uniform regardless of taper types. See eqns (25.2)±(25.4).
b V=9p/16 in3 (2.896 � 10ÿ5 m3), l=15.44 in (0.3922 m), E � 10 � 106 psi (6.895

�1010 Pa).
c [A]: (Timoshenko and Gere, 1961) [B]: (Wilson et al., 1971) [C]: (Lee and Oh).

Fig. 6. b vs n curves of linear taper by side number m.
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Shown in Fig. 10 are the elastica of strongest columns of m= 3 and p= 2 by taper type. The

horizontal and vertical de¯ections increase, as the taper type is increased from parabolic to sinusoidal to

linear taper, other parameters remaining constant.

6. Concluding remarks

The numerical methods developed herein for computing the elastica and buckling loads of simple

tapered columns of regular polygon cross-section with constant volume were found to be e�cient, and

highly versatile. The di�erential equations governing the elastica of such column were derived and

solved numerically. The linear, parabolic and sinusoidal tapers were chosen for the variable cross-

sectional depth. As the numerical results, the equilibrium paths and elastica were presented, and the

Fig. 7. b vs n curves of parabolic taper by side number m.

Fig. 8. b vs n curves of sinusoidal taper by side number m.

B.K. Lee, S.J. Oh / International Journal of Solids and Structures 37 (2000) 2507±25182516



Table 2

Values of n and b of the strongest columns by taper type

and side number m

Taper type m n b Ratioa

Linear taper 3 1.72 1.505 1.210

4 1.72 1.303 1.047

5 1.72 1.265 1.017

c 1.72 1.244 1.000

Parabolic taper 3 1.98 1.574 1.210

4 1.98 1.362 1.047

5 1.98 1.323 1.017

c 1.98 1.301 1.000

Sinusoidal taper 3 1.85 1.559 1.210

4 1.85 1.350 1.047

5 1.85 1.311 1.017

c 1.85 1.289 1.000

a Ratio of b of m= 3, 4 and 5, respectively, to m=c.

Fig. 9. b vs n curves by taper type.

Fig. 10. Elastica of strongest columns with m= 3 and p= 2.
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buckling load parameter vs section ratio (b vs n ) curves were also reported. The strongest columns by

taper type and side number of regular polygon cross section were determined by reading the peak point

of buckling load parameters and their corresponding section ratios on b vs n curves.

In this paper, the column of hinged-movable end constraint not subjected to end moments is

considered, and the column problem of other end constraints subjected to end moments will be

presented in the near future.
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